ООО «ЦентрЭнергоАвтоматика»

ОКП 42 5200

"УТВЕРЖДАЮ"
Генеральный директор
ООО «ЦентрЭнергоАвтоматика»

Bmany

Игнашев В.С.

«25» августа 2020 г.

Программное обеспечение «ТМИУС КП» (ПО «ТМИУС КП»)

ОПИСАНИЕ ФУНКЦИОНАЛЬНЫХ ХАРАКТЕРИСТИК

ЦЭАМ.425200.001 ОФК

СОДЕРЖАНИЕ

1	Фуі	нкциональные характеристики	4
		Цели и назначение Ключевые особенности ПО ТМИУС КП	
2		нкциональные модули	
	2.1	Модуль исполняемой среды	4
	2.2	Модуль конфигуратора	5
	2.3	Модуль визуализации и отображения (НМІ)	5
3	Сис	стемные требования	6
	3.1	Windows версия	
	3.2	Linux версия	6

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата
Разраб. Проверил		Пихтовні	иков Л.В.		08.20
		Игнашев	A.B.		08.20
Т. кон	тр.				
Н.контр. Утв.		Игнашев	B.C.		08.20
		Игнашев	B.C.		08.20

ЦЭАМ.425200.001 ОФК

ПО «ТМИУС КП» Описание функциональных характеристик

Стадия	Лист	Листов							
2 6									
ООО «ЦентрЭнергоАвтоматика»									

Перечень приведенных сокращений:

ТУ - технические условия

ПТК – программно-технический комплекс

ОЭБР – оперативная электромагнитная блокировка разъединителей

ЭМЗ – электромагнитный замок

ССПИ – системы сбора и передачи информации

АСУ ТП — автоматизированная система управления технологическим процессом

ЗИП — запчасти, инструменты и принадлежности

ПО – программное обеспечение

ОТК – отдел технического контроля

ПСИ – приемо-сдаточные испытания

КИ – квалификационные испытания

ПИ – периодические испытания

ТИ – типовые испытания

ПК – персональный компьютер

ЛАТР – лабораторный автотрансформатор

ОС – операционная система

КД – конструкторская документация;

МЭК — международная электротехническая комиссия.

н						
ı	Изм.	Кол.уч.	Лист	№ док.	Подпись	Лата

1 Функциональные характеристики

1.1 Цели и назначение

Программное обеспечение ТМИУС КП («Телемеханическая информационно-управляющая система контролируемого пункта») предназначено для создания:

- систем телемеханики;
- комплексов оперативной блокировки;
- АСУТП:
- конверторов протоколов;
- УСПД;
- систем диспетчеризации.

В состав ПО ТМИУС КП входят следующие модули:

- встроенный веб-сервер (не требуется установка дополнительных программных пакетов);
- исполняемая среда для различных аппаратных средств;
- конфигуратор на базе веб-сервера;
- человеко-машинный интерфейс (НМІ) на базе веб-сервера.

В зависимости от аппаратных средств для использования совместно с ПО ТМИУС КП, возможно установка дополнительных пакетов, расширяющих функции технического средства, например, пакеты для работы с GPIO (встроенными в устройства входами\выходами), SMS, Email и различными протоколами – SNMP, SNTP и другие.

1.2 Ключевые особенности ПО ТМИУС КП

В основе ПО ТМИУС КП лежат следующие ключевые особенности:

- Эффективность использования вычислительных ресурсов устройство с тактовой частотой 580 МГц может обрабатывать до нескольких тысяч операций ввода\вывода ежесекундно. Внутренний цикл обработки данных может является изменяемым, что позволяет при необходимости экономить ресурсы в ущерб скорости реакции системы;
- 2) Широкие возможности диагностики каждый процесс, отвечающий за обмен по каждому физическому или логическому портам, выполняется в отдельном потоке, что позволяет контролировать «зависшие» и аварийное завершённые потоки, и при необходимости перезапускать их;
- 3) Трассировка протоколов для каждого физического и логического порта возможен мониторинг обмена данными на уровне интерфейса и протокола. Это позволяет диагностировать правильность настройки протокола обмена и корректность приходящих данных по линиям связи;
- 4) Интуитивно понятный визуальный пользовательский интерфейс с возможность отображения текущих принимаемых данных в реальном времени непосредственно в среде настройки;
- 5) Информационная безопасность системы позволяет разделять и ограничивать права каждого пользователя, проверять целостность исполняемого модуля и конфигурационных файлов;

2 Функциональные модули

2.1 Модуль исполняемой среды

Исполняемый модуль ПО ТМИУС КП является кросс-платформенным и может исполняться на устройствах на аппаратных средствах на базе архитектур ARM, х86, х64. В качестве операционной системы возможно применение как семейство Windows, так и Linux (OpenWRT, Buildroot и прочие).

Основные функции исполняемого модуля:

- сбор телеметрии (ТС и ТИ) состояния основного оборудования энергообъекта прямым вводом и с устройств по различным интерфейсам и протоколам;
- сбор аварийно-предупредительной сигнализации (АПТС) энергообъекта и смежных энергообъектов по каналам связи;
- обработка получаемой информации по заданным алгоритмам, дорасчет (функциональный вычислитель на Java-подобном языке), преобразование форматов;
- хранение и архивирование получаемой информации;
- передача телеметрии на уровни диспетчерских центров с гибкой настройкой нумерации и параметров протоколов передачи;
- конфигурирование системы через встроенный Web-интерфейс;
- визуализация через Web-интерфейс оперативных данных в виде мнемосхемы, таблиц и списка событий;
- точность привязки меток времени дискретных сигналов к астрономическому времени не хуже 1 мс., аналоговых сигналов не хуже 50 мс;
- мониторинг протоколов в реальном времени;
- ограничение доступа и разграничения прав;
- логирование диагностической информации и производимых операций пользователями;
- функции горячего резерва и частичного горячего резерва;
- задание фильтра дребезга для каждого дискретного сигнала;
- синхронизация времени контроллера с точностью до 1 мкс;
- создание цепей оперативной блокировки из принимаемых по различным каналам связи телеметрии;
- функция удаленного или автоматического управления;

							Лист
						ЦЭАМ.425200.001 ОФК	4
Изм.	Кол.уч.	Лист	№док.	Подпись	Дата	,	4

- автоматическое диагностирование работоспособности основных модулей и формирование выходных сигналов о сбоях;
- поддержка функции ручного ввода значений.

Исполняемый модуль поддерживается работу по следующим протоколам приема:

- Шина I-8000/I-87000 модулей ICPDAS
- DCON
- Modbus ASCII/RTU/TCP
- ГОСТ Р МЭК-870-5-1-95 (FT3) ПЦ6806
- Проприетарный протокол МИП серии 3020, 3021 производства ООО "ЗИП Научприбор", г.Краснодар
- МЭК 60870-5-101
- МЭК 60870-5-103 (с функцией приема, хранение и передачи) осциллограмм
- МЭК 60870-5-104
- МЭК 61850-8-1 (GOOSE, MMS)
- FTP
- SNMP
- OPC UA
- DNP3
- MQTT (TLS)
- DLMS/COSEM/СПОДЭС протоколы счетчиков электроэнергии нового поколения
- Проприетарные протоколы счетчиков электроэнергии (Меркурий 230 и другие)

Исполняемый модуль поддерживает работу по следующим протоколам передачи:

- МЭК 60870-5-101
- МЭК 60870-5-104
- Modbus RTU/TCP
- ГРАНИТ
- CRQ
- МЭК 61850-8-1 (GOOSE, MMS)
- FTP
- SNMP
- OPC UA
- MQTT

Исполняемый модуль поддерживает работу по следующим протоколам синхронизации:

- SNTP/NTP в режиме клиента и сервера
- NMEA (GPS) с использованием PPS
- МЭК 60870-5-101/104

2.2 Модуль конфигуратора

Модуль конфигуратора запускается совместно со встроенным веб-сервером и служит для наладки устройства под конечный проект.

Основные функции модуля конфигуратора:

- Запуск нескольких вкладок конфигуратора для копирования конфигурации из одной вкладки в другую;
- Автоматическое сохранение конфигурации;
- Вход в конфигуратор по логину\паролю;
- Автоматическая нумерация идентификаторов сигналов;
- Массовое присвоение имен идентификаторам через буфер обмена;
- Отображение текущего состояние сигнала в реальном времени;
- Использование древовидной структуры для понятно организации рабочего пространства;
- Вынос части системных настроек системы в меню конфигуратора изменение IP адреса, источника синхронизации, мониторинг количества спутников GPS, исправность дисков для архивов и другие.

2.3 Модуль визуализации и отображения (НМІ)

Модуль визуализации запускается совместно со встроенным веб-сервером и служит для отображения графической информации устройства под конечный проект.

Основные функции модуля визуализации:

- Отображение графических мнемосхем с динамическими элементами;
- Отображение журнала событий и графиков на пространстве мнемосхемы и в отдельной вкладке;
- Выбор отображаемой мнемосхемы;
- Отображение логических схем оперативной блокировки;
- Выдача управляющих сигналов телеуправлений;
- Использование функции ручного ввода при отсутствии телеметрии;

				13	1 7	1 7	
							Лист
						ЦЭАМ.425200.001 ОФК	
Изм.	Кол.уч.	Лист	№док.	Подпись	Дата	,	3

- Быстрый переход из одной мнемосхемы к другой через динамические элементы на схеме;
- Отображение текущего состояние сигнала в реальном времени;

3 Системные требования

3.1 Windows версия

Операционные системы:

- Microsoft Windows Vista (32/64 бит)
- Microsoft Windows 7/8/8.1 (32/64 бит)
- Microsoft Windows 10 (32/64 бит)

Аппаратные требования:

- Intel Pentium 1000 MHz 32 бит (x86) / 64 бит (x64) и выше (или совместимый процессор)
- 1 Gb оперативной памяти;
- 150 MB свободного места на жестком диске
- Монитор с разрешением 800 на 600 и выше

3.2 Linux версия

Операционные системы:

- OpenWRT 15/19;
- Linux (версия ядра минимум 2.6.32);
- Buildroot

Аппаратные требования:

- ^ ARM9 192 МГц;
- 64 Мб оперативной памяти;
- 16 M6 Flash;
- 1 порт Ethernet;
- Наличие уникального идентификатора устройства.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата